

ISSN: 2349-2819

Engineering Technology & Science

Email: editor@ijarets.org

Volume-9, Issue-6 June – 2022

www.ijarets.org

Dimensions of metric graphs and associated parameters

Md. Nasimul Hoda

M.Phil, Roll No: 141432

Session: 2014-15

University Department of Mathematics

B.R.A Bihar University, Muzzaffarpur

Abstract

JARETS

A new outcome on metric dimension is refined herein to obtain: "A diagram G with $\beta(G) = k$ can't have K2k+1 - (2k-1 - 1)e as a subgraph.

Keywords: Metric Graph, dimensions, Parameters.

Introduction

As of late in 1996; Samir Khuller, Balaji Raghavachari and Azriel Rosenfeld1 have discussed various parts of the metric dimension of a chart introduced by Harary and have obtained various outcomes. Be that as it may, at times the outcomes have not been amplified to draw a nearer view of those diagrams with little metric dimension. In this paper, we include a few outcomes on charts with metric dimension k which give a glimpse into the milestones managed by them in an extremely simple and rich way. We obtain an improvement of the main outcome Hypothesis 3.2, page 2231 proving that a chart with metric dimension k can't have K2 k+1 – (2k-1 - 1)e as a subgraph. All through this article G indicates a finite simple associated undirected chart. We review that the metric dimension of G, indicated by $\beta(G)$ is defined as the cardinality of a minimal subset S of V having the property that for each pair of vertices u, v in V, there is a w in S to such an extent that d(w, u) 6= d(w, v). The coordinate of every v of V (G) as for every milestone bi belonging to S is defined as expected with i th part as d(v, bi), for every i. The main outcome is obtained via a succession of rudimentary outcomes

www.ijarets.org

Volume-9, Issue-6 June – 2022

Email- editor@ijarets.org

TABLE 1: The code $c_W(v)$ of v with respect to $W = \{u_1, u_7, v_5\}$ in P(9, 3).

ν	$c_W(v)$	ν	$c_W(\nu)$	ν	$c_W(v)$	ν	$c_W(v)$	ν	$c_W(v)$
u_1	(0, 3, 3)	u_2	(1, 4, 2)	u_3	(2, 4, 3)	u_4	(3, 3, 2)	u_5	(4, 2, 1)
u_6	(4, 1, 2)	u_7	(3, 0, 3)	u_8	(2, 1, 2)	u_9	(1, 2, 3)	ν_1	(1, 2, 4)
v_2	(2, 3, 1)	ν_3	(3, 3, 4)	ν_4	(2, 2, 3)	ν_5	(3, 3, 0)	v_6	(3, 2, 3)
v_7	(2, 1, 4)	ν_8	(3, 2, 1)	ν_9	(2, 3, 4)				

Main Results

Lemma 7. Let G be a connected graph and let $|N_2(v)| \ge 6$ or $|N_3(v)| \ge 8$ for each $v \in V(G)$. Then dim $(G) \ge 3$.

Proof. Clearly, for any $w, v \in V(G)$ and for any $z \in N_k(w)$ we have

$$d(v, w) - k \le d(v, z) \le d(v, w) + k.$$
(7)

Suppose, to the contrary, that $S = \{w_1, w_2\}$ is a resolving set of *G*. Since $|N_2(w_1)| \ge 6$ or $|N_3(w_1)| \ge 8$, we deduce from (7) and the Pigeonhole principle that there exist two vertices $x_1, x_2 \in N_2(w_1)$ such that $d(x_1, w_2) = d(x_2, w_2)$, a contradiction.

Theorem 8. For $n \ge 7$, (i) If $n \in \{9, 10, 11, 15\}$ or $n \equiv 1 \pmod{6}$, then $\dim(P(n, 3)) = 3$. (ii) If n = 20, then $\dim(P(n, 3)) = 5$.

Proof. If n = 9, then let $W = \{u_1, u_7, v_5\}$. The code of v with respect to W in P(9, 3) is presented in Table 1 yielding dim $(P(9, 3)) \le 3$.

Now, we show that $\dim(P(9,3)) \ge 3$. Suppose, to the contrary, there exists a resolving set $W = \{x, y\}$ of P(9,3). First let $W \cap U \ne \emptyset$. We may assume w.l.o.g. that $x \in W \cap U$. By (1), we have $|N_2(x)| = 6$. For each $u \in N_2(x)$, we have $d(y,x) - 2 \le d(y,u) \le d(y,x) + 2$. By the Pigeonhole principle, we have d(y,u) = d(y,v) for some $u, v \in N_2(x)$ and this leads to a contradiction. Now let $W \cap U = \emptyset$. Assume without loss of generality that $x = v_1$ and $y = v_i$ for some $i \in \{2, 3, 4, 5\}$. If $i \in \{2, 3\}$, then $(d(x, u_4), d(y, u_4)) = (d(x, u_9), d(y, u_9))$, and if $i \in \{4, 5\}$, then $(d(x, u_{7-i}), d(y, u_{7-i})) = (d(x, u_{9-i}), (y, u_{9-i}))$, a contradiction. Thus, $\dim(P(9, 3)) \ge 3$ and so $\dim(P(9, 3)) = 3$. Volume-9, Issue-6 June – 2022

Email- editor@ijarets.org

ISSN 2349-2819

If n = 10, then let $W = \{u_1, v_9, v_{10}\}$. The code of v with respect to W in P(10, 3) is presented in Table 2 showing that $\dim(P(10,3)) \le 3.$

Next, we show that $\dim(P(10,3)) \ge 3$. Suppose, to the contrary, there exists a resolving set $W = \{x, y\}$ of P(10, 3). As above, we may assume that $W \cap U = \emptyset$. We may assume w.l.o.g. that $x = v_1$ and $y = v_i$ for some $i \in \{2, 3, \dots, 6\}$. If $i \in \{2, 4, 6\}, \text{ then } (d(x, u_3), d(y, u_3)) = (d(x, u_5), d(y, u_5)),$ and if $i \in \{3, 5\}$, then we have $(d(x, u_2), d(y, u_2)) = (d(x, u_4), d(y, u_2)) = (d(x, u_4), d(y, u_2))$ $d(y, u_4)$), a contradiction.

If n = 11, then let $W = \{u_1, u_5, v_2\}$. The code of v with respect to W in P(11,3) is presented in Table 3 yielding $\dim(P(11,3)) \le 3.$

TABLE 2: The code $c_W(v)$ of v with respect to W	$V = \{u_1, v_9, v_{10}\}$ in $P(10, 3)$.
---	--

ν	$c_W(v)$	ν	$c_W(\nu)$	ν	$c_W(v)$	ν	$c_W(v)$	ν	$c_W(v)$
u_1	(0, 3, 2)	<i>u</i> ₂	(1, 2, 3)	u_3	(2, 3, 2)	u_4	(3, 4, 3)	<i>u</i> ₅	(4, 3, 4)
u_6	(5, 2, 3)	u_7	(4, 3, 2)	u_8	(3, 2, 3)	u_9	(2, 1, 2)	u_{10}	(1, 2, 1)
ν_1	(1, 4, 3)	v_2	(2, 1, 4)	ν_3	(3, 2, 1)	ν_4	(2, 5, 2)	v_5	(3, 2, 5)
v_6	(4, 1, 2)	v_7	(3, 4, 1)	ν_8	(2, 3, 4)	v_9	(3, 0, 3)	v_{10}	(2, 3, 0)

TABLE 3: The code $c_W(v)$ of v with respect to $W = \{u_1, u_5, v_2\}$ in $P(11, 3)$.										
ν	$c_W(v)$	ν	$c_W(v)$	ν	$c_W(v)$	ν	$c_W(\nu)$	ν	$c_W(v)$	
u_1	(0, 4, 2)	<i>u</i> ₂	(1, 3, 1)	u_3	(2, 2, 2)	u_4	(3, 1, 3)	u_5	(4, 0, 2)	
u_6	(4, 1, 3)	<i>u</i> ₇	(4, 2, 3)	u_8	(4, 3, 3)	u_9	(3, 4, 3)	u_{10}	(2, 4, 2)	
<i>u</i> ₁₁	(1, 4, 3)	ν_1	(1, 3, 3)	v_2	(2, 2, 0)	ν_3	(3, 3, 3)	ν_4	(2, 2, 3)	
v_5	(3, 1, 1)	v_6	(3, 2, 4)	v_7	(3, 3, 2)	ν_8	(3, 2, 2)	ν_9	(2, 3, 4)	
v_{10}	(3, 3, 1)	v_{11}	(2, 3, 3)							

TABLE 4: The code $c_W(v)$ of v with respect to $W = \{u_1, u_3, v_{11}\}$ in P(15, 3).

ν	$c_W(v)$	ν	$c_W(v)$	ν	$c_W(v)$	ν	$c_W(v)$	ν	$c_W(v)$
u_1	(0, 2, 4)	u_2	(1, 1, 3)	u_3	(2, 0, 4)	u_4	(3, 1, 4)	u_5	(4, 2, 3)
u_6	(5, 3, 4)	u_7	(4, 4, 3)	u_8	(5, 5, 2)	u_9	(5, 4, 3)	u_{10}	(4, 5, 2)
<i>u</i> ₁₁	(5, 5, 1)	u_{12}	(4, 4, 2)	<i>u</i> ₁₃	(3, 5, 3)	u_{14}	(2, 4, 2)	u_{15}	(1, 3, 3)
ν_1	(1, 3, 5)	v_2	(2, 2, 2)	v_3	(3, 1, 5)	v_4	(2, 2, 5)	v_5	(3, 3, 2)
v_6	(4, 2, 5)	v_7	(3, 3, 4)	ν_8	(4, 4, 1)	v_9	(4, 3, 4)	v_{10}	(3, 4, 3)
v_{11}	(4, 4, 0)	v_{12}	(3, 3, 3)	<i>v</i> ₁₃	(2, 4, 4)	v_{14}	(3, 3, 1)	v_{15}	(2, 2, 4)

www.ijarets.org

Volume-9, Issue-6 June – 2022

Email- editor@ijarets.org

ν	$c_W(v)$	ν	$c_W(v)$	ν	$c_W(\nu)$	ν	$c_W(v)$
u_1	(0, 2, 6, 4, 4)	u_2	(1, 1, 5, 3, 5)	<i>u</i> ₃	(2, 0, 6, 4, 4)	u_4	(3, 1, 5, 3, 3)
u_5	(4, 2, 4, 2, 4)	u ₆	(5, 3, 5, 3, 3)	u_7	(4, 4, 4, 2, 2)	u_8	(5, 5, 3, 1, 3)
u_9	(6, 4, 2, 2, 2)	u_{10}	(5, 5, 1, 3, 1)	u_{11}	(6, 6, 0, 2, 2)	u_{12}	(5, 5, 1, 3, 3)
<i>u</i> ₁₃	(6, 6, 2, 4, 2)	u_{14}	(5, 5, 3, 3, 3)	<i>u</i> ₁₅	(4, 6, 4, 4, 4)	u_{16}	(5, 5, 5, 5, 3)
<i>u</i> ₁₇	(4, 4, 4, 4, 4)	u_{18}	(3, 5, 5, 5, 5)	u_{19}	(2, 4, 6, 4, 4)	u_{20}	(1, 3, 5, 5, 5)
ν_1	(1, 3, 5, 5, 3)	v_2	(2, 2, 4, 2, 4)	ν_3	(3, 1, 5, 5, 5)	ν_4	(2, 2, 4, 4, 2)
v_5	(3, 3, 3, 1, 5)	ν_6	(4, 2, 4, 4, 4)	ν_7	(3, 3, 3, 3, 1)	ν_8	(4, 4, 2, 0, 4)
ν_9	(5, 3, 3, 3, 3)	v_{10}	(4, 4, 2, 4, 0)	ν_{11}	(5, 5, 1, 1, 3)	v_{12}	(4, 4, 2, 4, 4)
V ₁₃	(5, 5, 3, 5, 1)	V ₁₄	(4, 4, 2, 2, 4)	V ₁₅	(3, 5, 3, 5, 5)	v_{16}	(4, 4, 4, 4, 2)
V ₁₇	(3, 3, 3, 3, 5)	V ₁₈	(2, 4, 4, 6, 4)	V19	(3, 3, 5, 3, 3)	v_{20}	(2, 2, 4, 4, 6)

TABLE 5: The code $c_W(v)$ of v with respect to $W = \{u_1, u_3, u_{11}, v_8, v_{10}\}$ in P(20, 3).

Conclusion

At present, we are approaching a few issues connected with the metric dimension of diagrams. Some of them are the following:

- Obtaining a superior upper headed for the metric dimension of the cartesian result of two charts. To be more precise, we are trying to demonstrate (or finding a counterexample) that for all pair of charts G, H: β(GH) ≤ β(G)+β(H).
- Computing the metric dimension in the class of hypercubes (a few old and new realized values are displayed in the table underneath), grid charts and Hamming diagrams.

References

- 1. J. C'aceres, C. Hernando, M. Mora, M. L. Puertas, I. M. Pelayo and C. Seara, On the metric dimension of some families of graphs, preprint.
- 2. G. Chartrand, L. Eroh, M. A. Johnson and O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (1-3) (2000) 99–113.
- G. Chartrand, D. Erwin, G. L. Johns and P. Zhang, Boundary vertices in graphs, Discrete Math. 263 (2003) 25-34.
- 4. F. Harary and R. A. Melter, On the metric dimension of a graph, Ars Combinatoria 2 (1976) 191–195.
- S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs, Disc. Appl. Math. 70 (1996) 217– 229.
- C. Poisson and P. Zhang, The metric dimension of unicyclic graphs, J. Comb. Math Comb. Comput. 40 (2002) 17–32.
- 7. A. Seb"o and E. Tannier, On metric generators of graphs, Math. Oper. Res. 29 (2) (2004) 383–393.

International Journal of Advanced Research in Engineering Technology and Science

ISSN 2349-2819

www.ijarets.org

Volume-9, Issue-6 June – 2022

Email- editor@ijarets.org

- B. Shanmukha, B. Sooryanarayana and K. S. Harinath, Metric dimension of wheels, Far East J. Appl. Math. 8 (3) (2002) 217–229.
- 9. P. J. Slater, Leaves of trees, Congr. Numerantium 14 (1975) 549-559
- 10. S. Khuller, B. Raghavachari and A. Rosenfeld, Disc. appl. Math. 70 (1996), 217-219. 2.
- 11. F. Buckley and F. Harary, Distance in Graphs, Addision-Wesley (1990).
- S. Hayat, S. Wang, and J.-B. Liu, "Valency-based topological descriptors of chemical networks and their applications," Applied Mathematical Modelling: Simulation and Computation for Engineering and Environmental Systems, vol. 60, pp. 164–178, 2018.
- 13. P. J. Slater, "Leaves of trees," Congressus Numerantium, vol. 14, pp. 549–559, 1975.
- S. Khuller, B. Raghavachari, and A. Rosenfeld, "Landmarks in graphs," Discrete Applied Mathematics: Te Journal of Combinatorial Algorithms, Informatics and Computational Sciences, vol. 70, no. 3, pp. 217–229, 1996.
- 15. M. Johnson, "Structure-activity maps for visualizing the graph variables arising in drug design," Journal of Biopharmaceutical Statistics, vol. 3, no. 2, pp. 203–236, 1993.
- 16. M. Johnson, "Browsable structure-activity datasets," in Advances in Molecular Similarity Volume 2, vol.2 of Advances in Molecular Similarity, pp. 153–170, Elsevier, 1999.
- R. F. Bailey and K. Meagher, "On the metric dimension of Grassmann graphs," Discrete Mathematics & Teoretical Computer Science. DMTCS, vol. 13, no. 4, pp. 97–104, 2011.
- J. C´aceres, C. Hernando, M. Mora et al., "On the metric dimension of Cartesian products of graphs," SIAM Journal on Discrete Mathematics, vol. 21, no. 2, pp. 423–441, 2007.
- 19. G. Chartrand, L. Eroh, M. A. Johnson, and O. R. Oellermann, "Resolvability in graphs and the metric dimension of a graph," Discrete Applied Mathematics, vol. 105, no. 1-3, pp. 99–113, 2000.
- M. Feng and K. Wang, "On the metric dimension of bilinear forms graphs," Discrete Mathematics, vol. 312, no. 6, pp. 1266–1268, 2012.