Engineering Technology \& Science

Dimensions of metric graphs and associated parameters

Md. Nasimul Hoda

M.Phil, Roll No: 141432

Session: 2014-15
University Department of Mathematics
B.R.A Bihar University, Muzzaffarpur

Abstract

A new outcome on metric dimension is refined herein to obtain: "A diagram G with $\beta(\mathrm{G})=\mathrm{k}$ can't have $\mathrm{K} 2 \mathrm{k}+1$ - (2k-1-1)e as a subgraph.

Keywords: Metric Graph, dimensions, Parameters.

Introduction

As of late in 1996; Samir Khuller, Balaji Raghavachari and Azriel Rosenfeld1 have discussed various parts of the metric dimension of a chart introduced by Harary and have obtained various outcomes. Be that as it may, at times the outcomes have not been amplified to draw a nearer view of those diagrams with little metric dimension. In this paper, we include a few outcomes on charts with metric dimension k which give a glimpse into the milestones managed by them in an extremely simple and rich way. We obtain an improvement of the main outcome Hypothesis 3.2, page 2231 proving that a chart with metric dimension k can't have $\mathrm{K} 2 \mathrm{k}+1-(2 \mathrm{k}-1-$ 1)e as a subgraph. All through this article G indicates a finite simple associated undirected chart. We review that the metric dimension of G, indicated by $\beta(\mathrm{G})$ is defined as the cardinality of a minimal subset S of V having the property that for each pair of vertices u, v in V, there is a w in S to such an extent that $d(w, u) 6=d(w, v)$. The coordinate of every v of $\mathrm{V}(\mathrm{G})$ as for every milestone bi belonging to S is defined as expected with i th part as $\mathrm{d}(\mathrm{v}, \mathrm{bi})$, for every i . The main outcome is obtained via a succession of rudimentary outcomes

Table 1: The code $c_{W}(v)$ of v with respect to $W=\left\{u_{1}, u_{7}, v_{5}\right\}$ in $P(9,3)$.

v	$c_{W}(v)$								
u_{1}	$(0,3,3)$	u_{2}	$(1,4,2)$	u_{3}	$(2,4,3)$	u_{4}	$(3,3,2)$	u_{5}	$(4,2,1)$
u_{6}	$(4,1,2)$	u_{7}	$(3,0,3)$	u_{8}	$(2,1,2)$	u_{9}	$(1,2,3)$	v_{1}	$(1,2,4)$
v_{2}	$(2,3,1)$	v_{3}	$(3,3,4)$	v_{4}	$(2,2,3)$	v_{5}	$(3,3,0)$	v_{6}	$(3,2,3)$
v_{7}	$(2,1,4)$	v_{8}	$(3,2,1)$	v_{9}	$(2,3,4)$				

Main Results

Lemma 7. Let G be a connected graph and let $\left|N_{2}(v)\right| \geq 6$ or $\left|N_{3}(v)\right| \geq 8$ for each $v \in V(G)$. Then $\operatorname{dim}(G) \geq 3$.

Proof. Clearly, for any $w, v \in V(G)$ and for any $z \in N_{k}(w)$ we have

$$
\begin{equation*}
d(v, w)-k \leq d(v, z) \leq d(v, w)+k \tag{7}
\end{equation*}
$$

Suppose, to the contrary, that $S=\left\{w_{1}, w_{2}\right\}$ is a resolving set of G. Since $\left|N_{2}\left(w_{1}\right)\right| \geq 6$ or $\left|N_{3}\left(w_{1}\right)\right| \geq 8$, we deduce from (7) and the Pigeonhole principle that there exist two vertices $x_{1}, x_{2} \in N_{2}\left(w_{1}\right)$ such that $d\left(x_{1}, w_{2}\right)=d\left(x_{2}, w_{2}\right)$, a contradiction.

Theorem 8. For $n \geq 7$,
(i) If $n \in\{9,10,11,15\}$ or $n \equiv 1(\bmod 6)$, then $\operatorname{dim}(P(n, 3))=3$.
(ii) If $n=20$, then $\operatorname{dim}(P(n, 3))=5$.

Proof. If $n=9$, then let $W=\left\{u_{1}, u_{7}, v_{5}\right\}$. The code of v with respect to W in $P(9,3)$ is presented in Table 1 yielding $\operatorname{dim}(P(9,3)) \leq 3$.

Now, we show that $\operatorname{dim}(P(9,3)) \geq 3$. Suppose, to the contrary, there exists a resolving set $W=\{x, y\}$ of $P(9,3)$. First let $W \cap U \neq \emptyset$. We may assume w.l.o.g. that $x \in$ $W \cap U$. By (1), we have $\left|N_{2}(x)\right|=6$. For each $u \in N_{2}(x)$, we have $d(y, x)-2 \leq d(y, u) \leq d(y, x)+2$. By the Pigeonhole principle, we have $d(y, u)=d(y, v)$ for some $u, v \in N_{2}(x)$ and this leads to a contradiction. Now let $W \cap U=\emptyset$. Assume without loss of generality that $x=v_{1}$ and $y=v_{i}$ for some $i \in\{2,3,4,5\}$. If $i \in\{2,3\}$, then $\left(d\left(x, u_{4}\right), d\left(y, u_{4}\right)\right)=\left(d\left(x, u_{9}\right), d\left(y, u_{9}\right)\right)$, and if $i \in\{4,5\}$, then $\left(d\left(x, u_{7-i}\right), d\left(y, u_{7-i}\right)\right)=\left(d\left(x, u_{9-i}\right),\left(y, u_{9-i}\right)\right)$, a contradiction. Thus, $\operatorname{dim}(P(9,3)) \geq 3$ and $\operatorname{sodim}(P(9,3))=3$.

If $n=10$, then let $W=\left\{u_{1}, v_{9}, v_{10}\right\}$. The code of v with respect to W in $P(10,3)$ is presented in Table 2 showing that $\operatorname{dim}(P(10,3)) \leq 3$.

Next, we show that $\operatorname{dim}(P(10,3)) \geq 3$. Suppose, to the zontrary, there exists a resolving set $W=\{x, y\}$ of $P(10,3)$. As above, we may assume that $W \cap U=\emptyset$. We may assume w.l.o.g. that $x=v_{1}$ and $y=v_{i}$ for some $i \in\{2,3, \ldots, 6\}$. If $i \in\{2,4,6\}$, then $\left(d\left(x, u_{3}\right), d\left(y, u_{3}\right)\right)=\left(d\left(x, u_{5}\right), d\left(y, u_{5}\right)\right)$, and if $i \in\{3,5\}$, then we have $\left(d\left(x, u_{2}\right), d\left(y, u_{2}\right)\right)=\left(d\left(x, u_{4}\right)\right.$, $\left.d\left(y, u_{4}\right)\right)$, a contradiction.

If $n=11$, then let $W=\left\{u_{1}, u_{5}, v_{2}\right\}$. The code of v with respect to W in $P(11,3)$ is presented in Table 3 yielding $\operatorname{dim}(P(11,3)) \leq 3$.

Table 2: The code $c_{W}(v)$ of v with respect to $W=\left\{u_{1}, v_{9}, v_{10}\right\}$ in $P(10,3)$.

v	$c_{W}(v)$								
u_{1}	$(0,3,2)$	u_{2}	$(1,2,3)$	u_{3}	$(2,3,2)$	u_{4}	$(3,4,3)$	u_{5}	$(4,3,4)$
u_{6}	$(5,2,3)$	u_{7}	$(4,3,2)$	u_{8}	$(3,2,3)$	u_{9}	$(2,1,2)$	u_{10}	$(1,2,1)$
v_{1}	$(1,4,3)$	v_{2}	$(2,1,4)$	v_{3}	$(3,2,1)$	v_{4}	$(2,5,2)$	v_{5}	$(3,2,5)$
v_{6}	$(4,1,2)$	v_{7}	$(3,4,1)$	v_{8}	$(2,3,4)$	v_{9}	$(3,0,3)$	v_{10}	$(2,3,0)$

Table 3: The code $c_{W}(v)$ of v with respect to $W=\left\{u_{1}, u_{5}, v_{2}\right\}$ in $P(11,3)$.

v	$c_{W}(v)$								
u_{1}	$(0,4,2)$	u_{2}	$(1,3,1)$	u_{3}	$(2,2,2)$	u_{4}	$(3,1,3)$	u_{5}	$(4,0,2)$
u_{6}	$(4,1,3)$	u_{7}	$(4,2,3)$	u_{8}	$(4,3,3)$	u_{9}	$(3,4,3)$	u_{10}	$(2,4,2)$
u_{11}	$(1,4,3)$	v_{1}	$(1,3,3)$	v_{2}	$(2,2,0)$	v_{3}	$(3,3,3)$	v_{4}	$(2,2,3)$
v_{5}	$(3,1,1)$	v_{6}	$(3,2,4)$	v_{7}	$(3,3,2)$	v_{8}	$(3,2,2)$	v_{9}	$(2,3,4)$
v_{10}	$(3,3,1)$	v_{11}	$(2,3,3)$						

Table 4: The $\operatorname{code} c_{W}(v)$ of v with respect to $W=\left\{u_{1}, u_{3}, v_{11}\right\}$ in $P(15,3)$.

v	$c_{W}(v)$								
u_{1}	$(0,2,4)$	u_{2}	$(1,1,3)$	u_{3}	$(2,0,4)$	u_{4}	$(3,1,4)$	u_{5}	$(4,2,3)$
u_{6}	$(5,3,4)$	u_{7}	$(4,4,3)$	u_{8}	$(5,5,2)$	u_{9}	$(5,4,3)$	u_{10}	$(4,5,2)$
u_{11}	$(5,5,1)$	u_{12}	$(4,4,2)$	u_{13}	$(3,5,3)$	u_{14}	$(2,4,2)$	u_{15}	$(1,3,3)$
v_{1}	$(1,3,5)$	v_{2}	$(2,2,2)$	v_{3}	$(3,1,5)$	v_{4}	$(2,2,5)$	v_{5}	$(3,3,2)$
v_{6}	$(4,2,5)$	v_{7}	$(3,3,4)$	v_{8}	$(4,4,1)$	v_{9}	$(4,3,4)$	v_{10}	$(3,4,3)$
v_{11}	$(4,4,0)$	v_{12}	$(3,3,3)$	v_{13}	$(2,4,4)$	v_{14}	$(3,3,1)$	v_{15}	$(2,2,4)$

Table 5: The code $c_{W}(v)$ of v with respect to $W=\left\{u_{1}, u_{3}, u_{11}, v_{8}, v_{10}\right\}$ in $P(20,3)$.

v	$c_{W}(v)$	v	$c_{W}(v)$	v	$c_{W}(v)$	v	$c_{W}(v)$
u_{1}	$(0,2,6,4,4)$	u_{2}	$(1,1,5,3,5)$	u_{3}	$(2,0,6,4,4)$	u_{4}	$(3,1,5,3,3)$
u_{5}	$(4,2,4,2,4)$	u_{6}	$(5,3,5,3,3)$	u_{7}	$(4,4,4,2,2)$	u_{8}	$(5,5,3,1,3)$
u_{9}	$(6,4,2,2,2)$	u_{10}	$(5,5,1,3,1)$	u_{11}	$(6,6,0,2,2)$	u_{12}	$(5,5,1,3,3)$
u_{13}	$(6,6,2,4,2)$	u_{14}	$(5,5,3,3,3)$	u_{15}	$(4,6,4,4,4)$	u_{16}	$(5,5,5,5,3)$
u_{17}	$(4,4,4,4,4)$	u_{18}	$(3,5,5,5,5)$	u_{19}	$(2,4,6,4,4)$	u_{20}	$(1,3,5,5,5)$
v_{1}	$(1,3,5,5,3)$	v_{2}	$(2,2,4,2,4)$	v_{3}	$(3,1,5,5,5)$	v_{4}	$(2,2,4,4,2)$
v_{5}	$(3,3,3,1,5)$	v_{6}	$(4,2,4,4,4)$	v_{7}	$(3,3,3,3,1)$	v_{8}	$(4,4,2,0,4)$
v_{9}	$(5,3,3,3,3)$	v_{10}	$(4,4,2,4,0)$	v_{11}	$(5,5,1,1,3)$	v_{12}	$(4,4,2,4,4)$
v_{13}	$(5,5,3,5,1)$	v_{14}	$(4,4,2,2,4)$	v_{15}	$(3,5,3,5,5)$	v_{16}	$(4,4,4,4,2)$
v_{17}	$(3,3,3,3,5)$	v_{18}	$(2,4,4,6,4)$	v_{19}	$(3,3,5,3,3)$	v_{20}	$(2,2,4,4,6)$

Conclusion

At present, we are approaching a few issues connected with the metric dimension of diagrams. Some of them are the following:

- Obtaining a superior upper headed for the metric dimension of the cartesian result of two charts. To be more precise, we are trying to demonstrate (or finding a counterexample) that for all pair of charts G, H : $\beta(\mathrm{GH}) \leq \beta(\mathrm{G})+\beta(\mathrm{H})$.
- Computing the metric dimension in the class of hypercubes (a few old and new realized values are displayed in the table underneath), grid charts and Hamming diagrams.

References

1. J. C'aceres, C. Hernando, M. Mora, M. L. Puertas, I. M. Pelayo and C. Seara, On the metric dimension of some families of graphs, preprint.
2. G. Chartrand, L. Eroh, M. A. Johnson and O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (1-3) (2000) 99-113.
3. G. Chartrand, D. Erwin, G. L. Johns and P. Zhang, Boundary vertices in graphs, Discrete Math. 263 (2003) 25-34.
4. F. Harary and R. A. Melter, On the metric dimension of a graph, Ars Combinatoria 2 (1976) 191-195.
5. S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs, Disc. Appl. Math. 70 (1996) 217229.
6. C. Poisson and P. Zhang, The metric dimension of unicyclic graphs, J. Comb. Math Comb. Comput. 40 (2002) 17-32.
7. A. Seb"o and E. Tannier, On metric generators of graphs, Math. Oper. Res. 29 (2) (2004) 383-393.
8. B. Shanmukha, B. Sooryanarayana and K. S. Harinath, Metric dimension of wheels, Far East J. Appl. Math. 8 (3) (2002) 217-229.
9. P. J. Slater, Leaves of trees, Congr. Numerantium 14 (1975) 549-559
10. S. Khuller, B. Raghavachari and A. Rosenfeld, Disc. appl. Math. 70 (1996), 217-219. 2.
11. F. Buckley and F. Harary, Distance in Graphs, Addision-Wesley (1990).
12. S. Hayat, S. Wang, and J.-B. Liu, "Valency-based topological descriptors of chemical networks and their applications," Applied Mathematical Modelling: Simulation and Computation for Engineering and Environmental Systems, vol. 60, pp. 164-178, 2018.
13. P. J. Slater, "Leaves of trees," Congressus Numerantium, vol. 14, pp. 549-559, 1975.
14. S. Khuller, B. Raghavachari, and A. Rosenfeld, "Landmarks in graphs," Discrete Applied Mathematics: Te Journal of Combinatorial Algorithms, Informatics and Computational Sciences, vol. 70, no. 3, pp. 217-229, 1996.
15. M. Johnson, "Structure-activity maps for visualizing the graph variables arising in drug design," Journal of Biopharmaceutical Statistics, vol. 3, no. 2, pp. 203-236, 1993.
16. M. Johnson, "Browsable structure-activity datasets," in Advances in Molecular Similarity Volume 2, vol. 2 of Advances in Molecular Similarity, pp. 153-170, Elsevier, 1999.
17. R. F. Bailey and K. Meagher, "On the metric dimension of Grassmann graphs," Discrete Mathematics \& Teoretical Computer Science. DMTCS, vol. 13, no. 4, pp. 97-104, 2011.
18. J. C'aceres, C. Hernando, M. Mora et al., "On the metric dimension of Cartesian products of graphs," SIAM Journal on Discrete Mathematics, vol. 21, no. 2, pp. 423-441, 2007.
19. G. Chartrand, L. Eroh, M. A. Johnson, and O. R. Oellermann, "Resolvability in graphs and the metric dimension of a graph," Discrete Applied Mathematics, vol. 105, no. 1-3, pp. 99-113, 2000.
20. M. Feng and K. Wang, "On the metric dimension of bilinear forms graphs," Discrete Mathematics, vol. 312, no. 6, pp. 1266-1268, 2012.
